Thursday 6 September 2012

Haast's Eagle

Haast's Eagle (Harpagornis moorei) was a species of massive eagle that once lived on the South Island of New Zealand. The species was the largest eagle known to have existed. Its prey consisted mainly of gigantic flightless birds that were unable to defend themselves from the striking force and speed of these eagles, which at times reached 80 km/h (50 mph). The Eagle's massive size may have been an evolutionary response to the size of its prey, as both would have been much smaller when they first came to the island, and would have grown larger over time due to lack of competition. The Haast's Eagle became extinct around the year 1400, when its major food sources, the moa, were hunted to extinction by Maori living on the island and much of its dense-forest habitat was cleared.


Classification

 

Comparative morphology of Haast's Eagle with its closest living relative, the Little Eagle
 
DNA analysis has shown that this raptor is related most closely to the much smaller Little Eagle as well as the Booted Eagle (both of these two species were recently reclassified as belonging to the genus Aquila ) and not, as previously thought, to the large Wedge-tailed Eagle. Thus, Harpagornis moorei may be reclassified as Aquila moorei, pending confirmation. H. moorei may have diverged from these smaller eagles as recently as 700,000 to 1.8 million years ago. Its increase in weight by ten to fifteen times over that period is the greatest and quickest evolutionary increase in weight of any known vertebrate. This was made possible in part by the presence of large prey and the absence of competition from other large predators.

Etymology

 

Haast's Eagle was first classified by Julius von Haast in the 1870s, who named it Harpagornis moorei after George Henry Moore, the owner of the Glenmark Estate where bones of the bird had been found.
The genus name is a compound crassis word of the Greek word "harpax", meaning 'grappling hook', and the Greek "ornis", meaning 'bird'.

Size and habits

 
Haast's Eagles were the largest known true raptors, slightly larger even than the largest living vultures. Female eagles are significantly larger than males. Females of the Haast species are believed to have weighed 10–15 kg (22–33 lb) and males 9–12 kg (20–26 lb). They had a relatively short wingspan, measuring roughly 2.6–3 m (8 ft 6 in–9 ft 10 in). This wingspan is similar to that of some extant eagles (the wingspan now reported in large specimens of Golden Eagles and Steller's Sea Eagles). Even the largest extant eagles, however, are about forty percent smaller in body size than the size of Haast's Eagles.
Short wings may have aided Haast's Eagles when hunting in the dense scrubland and forests of New Zealand. Haast's Eagle sometimes is portrayed incorrectly as having evolved toward flightlessness, but this is not so; rather it represents a departure from the mode of its ancestors' soaring flight, toward higher wing loading. Two of the largest extant eagles, the Harpy Eagle and the Philippine Eagle, also have similarly reduced relative wing-length in adaptation to forest-dwelling.
The strong legs and massive flight muscles of these eagles would have enabled the birds to take off with a jumping start from the ground, despite their great weight. The tail was almost certainly long, up to 50 cm (20 inches) in female specimens, and very broad. This characteristic would compensate for the reduction in wing area by providing additional lift. Total length is estimated to have been up to 1.4 m (4 ft 7 in) in females, with a standing height of approximately 90 cm (2 ft 11 in) tall or perhaps slightly greater.
Haast's Eagles preyed on large, flightless bird species, including the moa, which was up to fifteen times the weight of the eagle. It is estimated to have attacked at speeds up to 80 km/h (50 mph), often seizing its prey's pelvis with the talons of one foot and killing with a blow to the head or neck with the other. Its size and weight indicate a bodily striking force equivalent to a cinder block falling from the top of an eight-story building. Its large beak also could be used to rip into the internal organs of its prey and death then would have been caused by blood loss. In the absence of other large predators or scavengers, a Haast's Eagle easily could have monopolised a single large kill over a number of days.

Maori legendry

 

It is believed that these birds are described in many legends of the Māori, under the names Pouakai, Hokioi, or Hakawai. However, it has been ascertained that the "Hakawai" and "Hokioi" legends refer to the Coenocorypha snipe – in particular the extinct South Island subspecies. According to an account given to Sir George Grey, an early governor of New Zealand, Hokioi were huge black-and-white predators with a red crest and yellow-green tinged wingtips. In some Māori legends, Pouakai kill humans, which scientists believe could have been possible if the name relates to the eagle, given the massive size and strength of the bird.

Extinction


Early human settlers in New Zealand (the Māori arrived around the year 1280) preyed heavily on large flightless birds, including all moa species, eventually hunting them to extinction. The loss of its natural prey caused the Haast's Eagle to become extinct as well around the year 1400, when the last of its natural food sources were depleted.
A noted explorer, Charles Edward Douglas, claims in his journals that he had an encounter with two raptors of immense size in Landsborough River valley (probably during the 1870s), and that he shot and ate them. These birds might have been a last remnant of the species, but some might argue that there had not been suitable prey for a population of Haast's Eagle to maintain itself for about five hundred years before that date, and 19th century Māori lore was adamant that the pouakai was a bird not seen in living memory. Still, Douglas' observations on wildlife generally are trustworthy; a more probable explanation, given that the alleged three-metre wingspan described by Douglas is likely to have been a rough estimate, is that the birds were Eyles' Harriers. This was the largest known harrier (the size of a small eagle) — and a generalist predator — and although it also is assumed to have become extinct in prehistoric times, its dietary habits alone make it a more likely candidate for late survival.
Until recent human colonisation that introduced rodents and cats, the only mammals found on the islands of New Zealand were three species of bat, one of which recently has become extinct. Free from terrestrial mammalian competition and predatory threat, birds occupied or dominated all major niches in the New Zealand animal ecology because there were no threats to their eggs and chicks by small terrestrial animals. Moa were grazers, functionally similar to deer or cattle in other habitats, and Haast's Eagles were the hunters who filled the same niche as top-niche mammalian predators, such as tigers or lions.

In art

 

Artwork depicting Haast's Eagle now may be viewed at OceanaGold's Heritage & Art Park at Macraes, Otago, New Zealand. The sculpture, weighing approximately 750 kg (1,700 lb; 118 st), standing 7.5 metres (25 ft) tall, and depicted with a wingspan of 11.5 metres (38 ft) is constructed from stainless steel tube and sheet and was designed and constructed by Mark Hill, a sculptor from Arrowtown, New Zealand.

Sunday 2 September 2012

Yak

The yak (Bos grunniens for the domesticated, Bos mutus for the wild animal ) is a long-haired bovine found throughout the Himalayan region of south Central Asia, the Tibetan Plateau and as far north as Mongolia and Russia. In addition to a large domestic population, there is a small, vulnerable wild yak population. In the 1990s, a concerted effort was undertaken to help save the wild yak population.

 

 

 

 

 

 

 

 

Etymology

 

The English word "yak" derives from the Tibetan (Tibetan:  Wylie: g.yag), or gyag – in Tibetan this refers only to the male of the species, the female being called a dri or nak. In English, as in most other languages which have borrowed the word, "yak" is usually used for both sexes.

Taxonomy

 

Yaks belong to the genus Bos, and are therefore related to cattle (Bos primigenius taurus, Bos primigenius indicus). Mitochondrial DNA analyses to determine the evolutionary history of yaks have been somewhat ambiguous.
The yak may have diverged from cattle at any point between one and five million years ago, and there is some suggestion that it may be more closely related to bison than to the other members of its designated genus. Apparent close fossil relatives of the yak, such as Bos baikalensis, have been found in eastern Russia, suggesting a possible route by which yak-like ancestors of the modern American bison could have entered the Americas.

The species was originally designated as Bos grunniens ("grunting ox") by Linnaeus in 1766, but this name is now generally only considered to refer to the domesticated form of the animal, with Bos mutus ("mute ox") being the preferred name for the wild species. Although some authors still consider the wild yak to be a subspecies, Bos grunniens mutus, the ICZN made an official ruling in 2003 permitting the use of the name Bos mutus for wild yaks, and this is now the more common usage.
Except where the wild yak is considered as a subspecies of Bos grunniens, there are no recognised subspecies of yak.

Physical characteristics

 

Domestic yak at Yumdrok Yumtso Lake

Wild yaks are among the largest bovids and are second only to the gaur in shoulder height. Wild yak adults stand about 1.6 to 2.2 m (5.2 to 7.2 ft) tall at the shoulder and weigh 305–1,000 kg (670–2,200 lb). The head and body length is 2.5 to 3.3 m (8.2 to 11 ft), not counting the tail of 60 to 100 cm (24 to 39 in). The females are about one-third the weight and are about 30% smaller in their linear dimensions when compared to bull wild yaks. Domesticated yaks are much smaller, males weighing 350 to 580 kg (770 to 1,300 lb) and females 225 to 255 kg (500 to 560 lb).
Yaks are heavily built animals with a bulky frame, sturdy legs, and rounded cloven hooves. They are the only wild bovids of this size with extremely dense, long fur that hangs down lower than the belly. Wild yaks are generally dark, blackish to brown, in pelage coloration. However, domestic yaks can be quite variable in color, often having patches of rusty brown and cream. They have small ears and a wide forehead, with smooth horns that are generally dark in colour. In males, the horns sweep out from the sides of the head, and then curve forward; they typically range from 48 to 99 cm (19 to 39 in) in length. The horns of females are smaller, only 27 to 64 cm (11 to 25 in) in length, and have a more upright shape. Both sexes have a short neck with a pronounced hump over the shoulders, although this is larger and more visible in males. Yaks are highly friendly in nature and can easily be trained. There has been very little documented aggression from yaks towards human beings, although mothers can be extremely protective of their young and will bluff charge if they feel threatened.
Both sexes have long shaggy hair with a dense woolly undercoat over the chest, flanks, and thighs to insulate them from the cold. Especially in males, this may form a long "skirt" that can reach the ground. The tail is long and horselike rather than tufted like the tails of cattle or bison. Wild yaks typically have black or dark brown hair over most of the body, with a greyish muzzle, although some wild golden-brown individuals have been reported. Domesticated yaks have a wider range of coat colours, with some individuals being white, grey, brown, roan or piebald. The udder in females and the scrotum in males are small and hairy, as protection against the cold. Females have four teats.
To the casual observer, yaks are easily confused with Highland cattle, but upon closer examination, the physical differences are quite apparent. However, Highland cattle are shaggy, rather than long-haired, and have straight backs and tufted tails.

Physiology

 

Yak physiology is well adapted to high altitudes, having larger lungs and heart than cattle found at lower altitudes, as well as greater capacity for transporting oxygen through their blood due to the persistence of foetal haemoglobin throughout life. Conversely, yaks do not thrive at lower altitudes, and begin to suffer from heat exhaustion above about 15 °C (59 °F). Further adaptations to the cold include a thick layer of subcutaneous fat, and an almost complete lack of functional sweat glands.
Compared with domestic cattle, the rumen of yaks is unusually large, relative to the omasum. This likely allows them to consume greater quantities of low-quality food at a time, and to ferment it longer so as to extract more nutrients. Yak consume the equivalent of 1% of their body weight daily while cattle require 3% to maintain condition. 

Odor

 

Contrary to popular belief, yak and their manure have little to no detectable odor when maintained appropriately in pastures or paddocks with adequate access to forage and water. Yak wool is naturally odor resistant.

Reproduction and life history

 

Yaks mate in the summer, typically between July and September, depending on the local environment. For the remainder of the year, many males wander in small bachelor groups away from the large herds, but, as the rut approaches, they become aggressive and regularly fight amongst each other to establish dominance. In addition to non-violent threat displays, bellowing, and scraping the ground with their horns, male yaks also compete more directly, repeatedly charging at each other with heads lowered or sparring with their horns. Like bison, but unlike cattle, males wallow in dry soil during the rut, often while scent-marking with urine or dung. Females enter oestrus up to four times a year, and females are receptive only for a few hours in each cycle.
Gestation lasts between 257 and 270 days, so that the young are born between May and June, and results in the birth of a single calf. The female finds a secluded spot to give birth, but the calf is able to walk within about ten minutes of birth, and the pair soon rejoin the herd. Females of both the wild and domestic forms typically give birth only once every other year, although more frequent births are possible if the food supply is good.
Calves are weaned at one year and become independent shortly thereafter. Wild calves are initially brown in colour, and only later develop the darker adult hair. Females generally give birth for the first time at three or four years of age, and reach their peak reproductive fitness at around six years. Yaks may live for more than twenty years in domestication or captivity, although it is likely that this may be somewhat shorter in the wild.

Wild yaks

 

A herd of domestic yaks wandering in The Himalayas
 
Wild yaks (Bos grunniens mutus or Bos mutus, Tibetan:  Wylie: 'brong) usually form herds of between ten and thirty animals. They are insulated by dense, close, matted under-hair as well as their shaggy outer hair. Yaks secrete a special sticky substance in their sweat which helps keep their under-hair matted and acts as extra insulation. This secretion is used in traditional Nepalese medicine. Many wild yaks are killed for food by hunters in China; they are now a vulnerable species.
The diet of wild yaks consists largely of grasses and sedges, such as Carex, Stipa, and Kobresia. They also eat a smaller amount of herbs, winterfat shrubs, and mosses, and have even been reported to eat lichen. Historically, the main natural predator of the wild yak has been the Tibetan wolf, but brown bears and snow leopards have also been reported as predators in some areas, likely of young or infirm wild yaks.
Thubten Jigme Norbu, the elder brother of Tenzin Gyatso, the 14th Dalai Lama, reported on his journey from Kumbum in Amdo to Lhasa in 1950:
Before long I was to see the vast herds of drongs with my own eyes. The sight of those beautiful and powerful beasts who from time immemorial have made their home on Tibet's high and barren plateaux never ceased to fascinate me. Somehow these shy creatures manage to sustain themselves on the stunted grass roots which is all that nature provides in those parts. And what a wonderful sight it is to see a great herd of them plunging head down in a wild gallop across the steppes. The earth shakes under their heels and a vast cloud of dust marks their passage. At nights they will protect themselves from the cold by huddling up together, with the calves in the centre. They will stand like this in a snow-storm, pressed so close together that the condensation from their breath rises into the air like a column of steam. The nomads have occasionally tried to bring up young drongs as domestic animals, but they have never entirely succeeded. Somehow once they live together with human beings they seem to lose their astonishing strength and powers of endurance; and they are no use at all as pack animals, because their backs immediately get sore. Their immemorial relationship with humans has therefore remained that of game and hunter, for their flesh is very tasty.
—Thubten Norbu, Tibet is My Country

Distribution and habitat

 

Wild yaks are found primarily in northern Tibet and western Qinghai, with some populations extending into the southernmost parts of Xinjiang, and into Ladakh in India. Small, isolated populations of wild yak are also found farther afield, primarily in western Tibet and eastern Qinghai. In historic times, wild yaks were also found in Nepal and Bhutan, but they are now considered extinct in both countries, except as domesticated animals.
The primary habitat of wild yaks consists of treeless uplands between 3,000 and 5,500 m (9,800 and 18,000 ft), dominated by mountains and plateaus. They are most commonly found in alpine meadows with a relatively thick carpet of grasses and sedges, rather than the more barren steppe country.

Behaviour

 

Yaks are herd animals. Herds can contain several hundred individuals, although many are much smaller. The herds consist primarily of females and their young, with a smaller number of adult males. The remaining males are either solitary, or found in much smaller groups, averaging around six individuals. Although they can become aggressive when defending young, or during the rut, wild yaks generally avoid humans, and may rapidly flee for great distances if any approach.

Domesticated yaks


Domesticated yaks have been kept for thousands of years, primarily for their milk, fibre and meat, and as beasts of burden. Their dried dung is an important fuel, used all over Tibet, and is often the only fuel available on the high treeless Tibetan plateau. Yaks transport goods across mountain passes for local farmers and traders as well as for climbing and trekking expeditions. "Only one thing makes it hard to use yaks for long journeys in barren regions. They will not eat grain, which could be carried on the journey. They will starve unless they can be brought to a place where there is grass." They also are used to draw ploughs. Yak milk is often processed to a cheese called chhurpi in Tibetan and Nepali languages, and byaslag in Mongolia. Butter made of Yaks' milk is an ingredient of the butter tea that Tibetans consume in large quantities, and is also used in lamps and made into butter sculptures used in religious festivities. Yaks grunt, and unlike cattle are not known to produce the characteristic bovine lowing sound.

Yak sports

 

In parts of Tibet and Karakorum yak racing is a form of entertainment at traditional festivals and is considered an important part of their culture. More recently, sports involving domesticated yaks, such as yak skiing, or yak polo, are being marketed as tourist attractions in Central Asian countries, including Gilgit–Baltistan, Pakistan.

Hybrid yak

 

In Nepal, Tibet and Mongolia, domestic cattle are crossbred with yaks. This gives rise to the infertile male dzo as well as fertile females known as dzomo or zhom, which may be crossed again with cattle. The "Dwarf Lulu" breed, "the only Bos primigenius taurus type of cattle in Nepal" has been tested for DNA markers and found to be a mixture of both taurine and zebu types of cattle (B. p. taurus and B. p. indicus) with yak. According to the International Veterinary Information Service, the low productivity of second generation cattle-yak crosses makes them suitable only as meat animals.
Crosses between yaks and domestic cattle (Bos primigenius taurus) have been recorded in Chinese literature for at least 2,000 years. Successful crosses have also been recorded between yak and American bison, gaur, and banteng, generally with similar results to those produced with domestic cattle.

Saturday 1 September 2012

African Elephant

African elephants are the elephants of the genus Loxodonta (Greek for 'oblique-sided tooth'), consisting of two extant species, the African bush elephant and the smaller African forest elephant. Loxodonta is one of the two existing genera in the family Elephantidae. Although it is commonly believed that the genus was named by Georges Cuvier in 1825, Cuvier spelled it Loxodonte. An anonymous author romanized the spelling to Loxodonta and the International Code of Zoological Nomenclature (ICZN) recognizes this as the proper authority.
Fossil members of Loxodonta have only been found in Africa, where they developed in the middle Pliocene.

 

 

 

 

 

 

 

Description

 

The African elephant is the largest living terrestrial animal. Its thickset body rests on stocky legs and it has a concave back. Its large ears enable heat loss. Its upper lip and nose forms a trunk. The trunk acts as a fifth limb, a sound amplifier and an important method of touch. The African elephant's trunk ends in two opposing lips, whereas the Asian elephant trunk ends in a single lip. African bush elephants are bigger than Asian elephants. Males stand 3.2–4.0 m (10–13 ft) tall at the shoulder and weigh 4,700–6,048 kg (10,000–13,330 lb), while females stand 2.2–2.6 m (7.2–8.5 ft) tall and weigh 2,160–3,232 kg (4,800–7,130 lb).[6]
The largest individual recorded stood four metres to the shoulders and weighed ten tonnes.

Teeth

Female African forest elephant with juvenile in the Republic of the Congo

Elephants have four molars; each weighs about 5 kg (11 lb) and measures about 30 cm (12 in) long. As the front pair wears down and drops out in pieces, the back pair shifts forward, and two new molars emerge in the back of the mouth. Elephants replace their teeth six times. At about 40 to 60 years of age, the elephant no longer has teeth and will likely die of starvation, a common cause of death.
Their tusks are firm teeth; the second set of incisors become the tusks. They are used for digging for roots and stripping the bark off trees for food, for fighting each other during mating season, and for defending themselves against predators. The tusks weigh from 23–45 kg (51–99 lb) and can be from 1.5–2.4 m (5–8 ft) long. Unlike Asian elephants, both male and female African elephants have tusks. They are curved forward and continue to grow throughout the elephant's lifetime. The enamel plates of the molars are fewer in number than in Asian elephants.

Distribution and habitat

 

African bush elephant
 
The African elephant can be found in Eastern, Southern and West Africa, either in dense forests, mopane and miombo woodlands, Sahelian scrub or deserts.

Classification

 

  • African bush elephant, Loxodonta africana
    • North African elephant, Loxodonta africana pharaoensis (extinct). Presumed subspecies north of the Sahara from the Atlas to Ethiopia.
  • African forest elephant, Loxodonta cyclotis
  • Loxodonta atlantica (fossil). Presumed ancestor of the modern African elephants
  • Loxodonta exoptata (fossil). Presumed ancestor of L. atlantica
  •  Loxodonta adaurora (fossil). May belong in Mammuthus.
Bush and forest elephants were formerly considered subspecies of the same species Loxodonta africana. As described in the entry for the forest elephant in the third edition of Mammal Species of the World (MSW3), there is now morphological and genetic evidence they should be considered as separate species.

Females (here bush elephants in Tanzania) usually live in smaller or larger herds

Much of the evidence cited in MSW3 is morphological. The African forest elephant has a longer and narrower mandible, rounder ears, a different number of toenails, straighter and downward tusks, and considerably smaller size. With regard to the number of toenails: the African bush elephant normally has four toenails on the front foot and three on the hind feet, the African forest elephant normally has five toenails on the front foot and four on the hind foot (like the Asian elephant), but hybrids between the two species commonly occur.
MSW3 lists the two forms as full species and does not list any subspecies in its entry for Loxodonta africana. However, this approach is not taken by the United Nations Environment Programme's World Conservation Monitoring Centre nor by the International Union for Conservation of Nature (IUCN), both of which list L. cyclotis as a synonym (not even a subspecies) of L.africana.
A consequence of the IUCN taking this view is that the IUCN Red List makes no independent assessment of the conservation status of the two forms of African elephant. It merely assesses the two forms taken together as a unit as vulnerable.
A study of nuclear DNA sequences published in 2010 indicated that the divergence date between forest and savanna elephants is 2.6–5.6 million years ago, which is virtually the same as the divergence date estimated between the Asian elephant and woolly mammoths (2.5–5.4 million years ago), strongly supporting their status as separate species. Forest elephants were found to have a high degree of genetic diversity, perhaps reflecting periodic fragmentation of their habitat during the climatic changes of the Pleistocene.

Behavior

 

African elephant society is arranged around family units. In each family unit are around ten individuals made up of closely related females and their calves. Each family unit is led by an old female known as the matriarch. When separate family units bond, they form kinship groups or bond groups. After puberty, male elephants tend to form alliances with other males.
Elephants are at their most fertile between the ages of 25 and 45. Calves are born after a gestation period of nearly two years. They are cared for by their mother and other young females in the group, known as allomothers.
Elephants use some vocalisations that are beyond the hearing range of humans, to communicate across large distances.

Feeding

 

African elephants can eat up to 450 kilograms of vegetation per day though their digestive system is not very efficient and only 40% of this food is properly digested. They use their trunk to pluck at leaves and their tusks to tear at branches, which can cause enormous damage.

Intelligence


African elephants are highly intelligent, and they have a very large and highly convoluted neocortex, a trait also shared by humans, apes and certain dolphin species. They are amongst the world's most intelligent species. With a mass of just over 5 kg (11 lb), elephant brains are larger than those of any other land animal, and although the largest whales have body masses twenty-fold those of a typical elephant, whale brains are barely twice the mass of an elephant's brain. The elephant's brain is similar to that of humans in terms of structure and complexity - such as the elephant's cortex having as many neurons as a human brain, suggesting convergent evolution.
Elephants exhibit a wide variety of behaviors, including those associated with grief, learning, allomothering, mimicry, art, play, a sense of humor, altruism, use of tools, compassion, cooperation, self-awareness, memory and possibly language. All point to a highly intelligent species that are thought to be equal with cetaceans and primates.

Conservation


Poaching significantly reduced the population of Loxodonta in certain regions during the 20th century. In the ten years preceding an international ban in the trade in ivory in 1990 the African elephant population was more than halved from 1.3 million to around 600,000. An example of how the ivory trade causes poaching pressure is in the eastern region of Chad. There, the estimated elephant population was 400,000 as recently as 1970, but by 2006 the number had dwindled to about 10,000. The African elephant nominally has governmental protection, but poaching for the ivory trade can devastate populations. Kenya was one of the worst affected countries with populations declining by as much as 85 percent between 1973 and 1989.
Protection of African elephants has become high profile in many countries. In 1989, the Kenyan Wildlife Service burnt a stockpile of tusks in protest against the ivory trade. A number of states permit sport hunting of elephants. A major issue in elephant conservation is the conflicts between elephants and a growing human population. Human encroachment into or adjacent to natural areas where bush elephants occur has led to recent research into methods of safely driving groups of elephants away from humans, including the discovery that playback of the recorded sounds of angry honey bees is remarkably effective at prompting elephants to flee an area.
The International Union for Conservation of Nature (IUCN) African elephant specialist group has set up a human elephant conflict working group to look at conserving a species that has potential to be detrimental to human populations. They believe that different approaches are needed in different countries and regions, and so develop conservation strategies at National and Regional levels.